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SCAFFOLD

A temporary platform, either supported from below or suspended from above,
on which workers sit or stand when performing tasks at heights above the
ground . It consists of one or more wooden planks and is supported by either a
timber or a tubular steel or aluminium frame.
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SCAFFOLDS IN TISSUE ENGINEERING

Provide a platform for cell function, adhesion and
transplantation

It functions as a template to allow new tissue growth and
also provides temporary structural support.

Allow cell attachment and migration
Deliver and retain cells and biochemical factors
Enable diffusion of vital cell nutrients

Exert certain mechanical and biological influences to
modify the behaviour of the cell phase



REQUIREMENTS OF SCAFFOLDS

Good biocompatibility with surrounding tissue
Large porosity and pore size

Well interconnected pore network structure for cell adhesion
and growth.

Biodegradability

Mechanical properties should be similar to the tissue being
replaced.

Diffusability throughout the matrix.
Provide good attachment with the cells.



Scaffolds

Various textures and materials
« Encourage cells to grow
* Allow nutrients to permeate
« Won't harm the patient




Porous Structure Promotes:

<+Cell attachment (macro pores)

“*Proliferation (macro pores)

< Differentiation (macro pores)

“*Provides pathways for biofluids and wastes (nano pores)

“*Favors tissue regeneration (macro pores)



Why do we need fibrous structure??
“*Fibers are suitable for use as scaffolding

components
-compared to other sturctures (eg: particles) due to their
continuous structure.

»Advantage of scaffold composed of ultrafine, continuous
fibers:

-High porosity.

-Variable pore size distribution.

-High surface -to-volume ratio

- Morphological similarity to natural ECM



Nanofiber Production Technigues
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ELECTROSPINNING

* Electrospinning was first observed in 1897 by Rayleigh, studied in detail
by Zeleny and patented by Formhals(1934).

* Basically, an electrospinning system consists of three components:
>A high voltage power supply
>A spinneret
>A grounded collector plate

 Both natural as well as synthetic polymers can be electrospun

*Over the years, more than 200 polymers have been eletrospun successfully



Electrospinning of fibres

Electrospinning, a fiber spinning technique
that relies on electrostatic forces to
produce fibers in the nanometer scale.

Under the influence of the electrostatic
field, a pendant droplet of the polymer
solution at the spinneret is deformed into a
conical shape.

If the voltage surpasses a threshold value,
electrostatic forces overcome the surface
tension, and a fine charged jet is ejected.

As these electric forces increase, the jet
will elongate, accelerate by the electric
forces and the solvent evaporates.




Electrospinning Process

Three Main Components of Electrospinning;

Taylor Cone

Feeding Uni

High Voltage Power W Fiber

Formation

Electrospinning occurs when the electrical forces at the surface of a polymer solution
overcome the surface tension and cause an electrically charged jet to be ejected




Electrospinning can be considered as a five step

process
0 Charging of the solution Polymer Solution
0 Formation of the cone jet g Taylor Cone
(Taylor Cone) when the r.ﬂ
electrostatic force dominates [FsEr.
the surface tension o
0 Thinning of the steady jet
d Beginning and growth of

instabilities resulting the 2. Fire Fomatir
diameter reduction of the fibers High Voltage _ <
into the sub-micron regime & Supply =
termination thinning of the
charged jet

0 Collection of the fibers into
useful forms




Overview Nanofiber

Self-assembly Difficult Produce fiber on  Lack of control
lowest ECM scale < Limitation on
(5-8 nm) polymers

Phase separation Easy * Tailorable sLab scale
mechanical prop.  production
 Batch to batch e Limitation on
consistency polymers

Electrospinning Easy * Cost effective » Large scale
* Long continuous fibers
fibers * No control over

 Tailorable mech 3D pore structure
properties, size &
shape



Parameters affecting electrospinning

Electrospinning process is solely governed by many parameters
which play a significant role in determining the morphology and
diameter of electrospun nanofibers. Parameters can be divided
into three.

“»Solution parameters

“+*Operational parameters

“*Ambient parameters



Solution Parameters

< Molecular weight.

<»Concentration /viscosity of the solution
<+ Surface tension

< Conductivity of the solution



Operational Parameters

< Applied electric voltage
<+ TCD (distance between tip and collector)
< Flow rate

“Effect of Collector



Ambient Parameters

<+ Temperature
< Humidity

< Air Velocity
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Figure 4. Core—shell nozzle design used to encapsulate drugs
within the nanofiber.



Increasing capillary-screen distance
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Figure 2. Effect of increasing capillary-screen distance on 15 wt % Estane® 5750 electrospun at
10KY & 3mlh Average diameter range ~ 1 pum - 148 nm & bead size ~ 10 pm - 2.5 mm. The

average diameter of fibers & bead-size decreases with increasing capillary-screen distance.



Increasing capillary-screen distance
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Figure 3. Effect of increasing capillary-screen distance on 20 wt % Estane® 5750 electrospun

at 10 KWV & 3mlh. Awerage diameter rance 5 uim — 333 nm. The average diameter of fibers
decreases with increasing capillary-screen distance.



Increasing capillary-screen distance
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Figure 4. Effect of increasing capillary-screen distance on 25-wt % Estane® 5750 electrospun at
10 BV & Smlrh. The Average diameter range 15 5 pm — 205 nm. A broad distribution of fiber

diameters was obtained.
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Figure 6. Effect of process parameters on fiber diameter, produced by Electrospinning



Capillary

Ejected Fiber
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Increasing Applied Voltage

Fig. 2. Effect of varying the applied voltage on the formation of the Taylor
cone. At relatvely low applied voltages a pendant drop (depicted in light
oray) i1s formed at the tip of the capillary. The Taylor cone (depicted in dark
eray) then forms at the tip of the pendant drop. However, as the applied voli-
age is increased (moving from left to right) the volume of the pendant drop
decreases until the Taylor cone is formed at the tip of the capillary. Increasing
the applied voltage further results in the fiber jet being gjected from within the
capillary, which is associated with an increase in bead defects.



Table 1

Effects of electrospinning parameters on fiber morphology

Parameter

Effect on fiber morphology

Applied voltage 1
Flow rate 1

Distance between
capillary and
collector {1

Polymer concentration
(viscosity) 1

Solution conductivity 1

Solvent volatility 1

Fiber diameter | initially, then T (not monotonic)
Fiber diameter T (beaded morphologies occur if
the flow rate is too high)

Fiber diameter | (beaded morphologies occur if
the distance between the capillary and collector

15 too short)

Fiber diameter T (within optimal range)

Fiber diameter | (broad diameter distribution)
Fibers exhibit microtexture (pores on
their surfaces, which increase surface area)
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Effect of polymer concentration on fiber diameter. Fibers were electrospun
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alcohol)
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Polymers used in electrospinning

There are a wide range of polymers that used in electrospinning and are
able to form fine nanofibers within the submicron range and used for
varied applications. Electrospun nanofibers have been reported as being
from various synthetic polymers, natural polymers or a blend of both
including proteins, nucleic acids and even polysaccharides.

Natural polymers Synthetic polymers
Silk fibroin Poly Lactic acid
Chitosan Poly caprolactam
Collagen Poly glycolic acid
Gelatin Poly urethane

Fibrinogen Poly (lactide-co-glycolide)



Polymer Nanocomposite Scaffolds

Polymer Nanocomposite Scaffolds appear most promising Biomaterial
for Tissue Engineering Applications

‘

“*Controlled size
»Surface morphology
“*Porosity and Diffusive permeability

“»Superior mechanical properties __| compared with conventional

“»Improved durability polymers or composites
“*Surface bioactivity

“»Biocompatibility
»Biodegradability
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Polymer Nanocomposites

Polymers comprising particles at least one dimension in the nanosize
range (1-100 nm)

Class of materials that have properties with significant commercial
potential

Attractive features identified with nanocomposites are:

Efficient reinforcement without loss of ductility and even improvement in
Impact strength

Excellent optical and altered electronic properties
Heat Stability

Flame resistance

Improved gas barrier properties

Improved abrasion resistance

Reduced shrinkage and residual stress



Potential Nanocomposite Materials

Nanotubes

Graphitic platelets

Nano talc

Synthetic and natural clays
Cellulose fibres (flax, hemp...)

Metal oxides (TiO2, ZnO), Phosphates



Work done at Mahatma Gandhi University

Various polymer nanocomposite scaffolds are prepared by electrospinning,
characterisation is done and extended to relevant applications.

Filler in
solvent

sonication

Adjusting :

“*»The solution parameters

<»operational parameters

+

Polymer in
solvent

magnetic stirring (10 hours)

— |

Slurry

Mixing for 10 hours




vEffect of electrospinning processing variables on
the membrane structure.

1. Effect of Polymer Concentration
2. Effect of Clay content
3. Effect of Applied Voltage

4. Moisture Content



1. Effect of Polymer Concentration
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10kv. X5,000 5pm 10kv. X5,000 5pm

15kV. X1,000 10pm 15kV X1,000 10pum

Electrospinning of PCL soln.using DCM solvent (Parameters: Voltage-15 kV,
TCD distance-12 cm , Biomacromolecules, submitted



2.Effect of Clay content
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wt7% Biomacromolecules, submitted
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3.Effect of Applied Voltage

- o

15KV X1,000  10pum

15KV X1,000 10pm

At 8 kV
At 15 kV

Electrospinning parameters: PCL soln- 8 wt.%, clay- 5 wt.%, solvent-
DCM, Solution feed rate -0.5 ml/hr, Biomacromolecules, submitted



Average Diameter ( 10° m)

Average Diameter variation with respect to solution

concentration, Clay Content and Electrical Potential
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IT.XRD Analysis

—— Nano clay
300 - —— PCL+ 1% clay
- PCL+ 5% clay
] —— PCL+ 9% clay
250 Neat
200
2 150+
%]
c
i)
= 100
50
04 I
0 5 10 15

Cloisite 15A,
Biomacromol,
submitted



IV.Thermal Analysis
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TGA curves of the electrospun fibres and clay

DSC curves of PCL and electrospun fibres,
Biomacromolecules, submitted

Clay content(wt%) T onset (°c)

0 205.4
1 269.2
5 266.2
15 135.7

Degree of Crystallanity
%

Pure PCL 91.9
3 wt.% clay 82.4
5 wt.% clay 76.8
9 wt.% clay 66.1

Crystallization Temperature ( °C)

Pure PCL 26.53
1 wt.% clay 29.76
3 wt.% clay 31.04
5 wt.% clay 32.50
9 wt.% clay 32.10




Scanning Electron Microscopy

SEM micrographs of a neat PCL electrospun mat (a) and PCL/CNFs
electrospun mats loaded with 1% wt CNFs.

Bhardwaj etal,Biotech. Adv. 2010



Transmission Electron Microscopy

TEM images illustrating the morphological differences in composites with a thermoplastic poly(urethane) matrix filled
with (a) unexfoliated graphite in a stacked morphology, and (b) TEGO, processed by melt mixing. Images (c) and (d)
show TEGO/polyurethane composites produced by solution blending and in situ polymerization, respectively, illustrating
a more exfoliated state of dispersion

Potts etal, Polymer 2011



AFM
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AFM images of surface topography and corresponding cross-sectional profiles of 15 wt %
electrospun PS fibres at different clay concentrations (1 x 1um) (a) without clay, (c) with 1
wt % clay, (e) with 4 wt 7% clay, and (g) with 8 wt 7% clay.

Ji etal, Langmiur, 2006



=21 micrographs of 190 000 g/mol PS/THF
fibers electrospun under varying humidity: (a)
W <25%, (b) 31-38%, (c) 40-45%, (d) 50-59%, (e)
¢= 60-72%.
B phase separation and breathing.
Macromolecules



FESEM micrograph of 171 000 g/mol PS/THF
fiber electrospun in 50% humidity.,
Macromolecules






* In electrospinning processing, individual fiber diameters
typically range from 50 nm to a few micrometers,which
necessarily results in a membrane containing pores in
the similar range ofelectrospun fibers .The nutrients and
metabolic wastes may pass through the nano-sized (ca.
10—1000 nm) porosity ofelectrospun membrane but it
seems too small to provide enough space for the cell
growth and for the blood vessel invasion. Therefore, it is
desirable for the electrospinning technique to be
complemented by techniques providing micro-sized (ca.
10—-300 mm) porosity and maintaining its robust
structure during cell growth and biodegradation

DUAL POROUS SCAFFOLDS PREPARED
BY ELECTROSPINNING AND SALT
LEACHING



e the exfoliated MMT/PLLA solution was
electrospun to provide MMT-reinforced PLLA
nanofibers], which were subsequently mixed
with NH4HCO3/NaCl salt particles and
mechanically entangled by a cold
compression-molding process in a solid state.
After leaching out the salts, the resultant
solid scaffolds exhibited a robust porous
structure containing a dual-porosity network
in the ranges ofa few nanometers and a few
hundred micrometers., Biomaterials
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Water Contact angle
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Water contact angle (WCA) of electrospun scaffolds: (a) averaged
WCAs; (b) WCAs measurement changed with the time: measured at 2
s,4s,6s,8s,10sand 12 s. Bars correspond to the meantstandard
deviation for n210 measurements

D. Cao et al,Colloids and Surfaces B: Biointerfaces, 2011



Tensile properties
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Typical tensile stress—strain curves of pure PCL and PCL-MWCNTs nanofiber membranes



In vitro degradation
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In vitro degradation of pure bulk PCL and electrospun PCL-MWCNTs nanofiber
membrane in PBS (pH 7.4) at 37 °C.
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Wound healing
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~ Implantation in Guinea pigs




Wound Healing Activity

A 2 X 2 cm full thickness skin excision wound was made and PCL membranes
with 2 X 2 cm dimensions were sutured on the wounds and the photographs
were taken each day until the wounds were perfectly healed.

Positive control (Povidone- lodine (Betadine® ointment) and negative control
groups were also maintained.

The percentage of wound healing was calculated using the formula,
W% = [WA® - WAY] , 100

WAL

where W”is the percentage of wound healing, WA? is the area of wound
at Ot day and WAt is the area of wound after different days of healing.




Present approach
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Morphology
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Scanning  Electron  Micrograph  of electrospun  neat
polycaprolactone membrane (a), fiber diameter distribution and
the pore space distribution (c).

Augustine, R., Malik, H. N., Singhal, D. K., Mukherjee, A., Malakar, D., Kalarikkal, N., & Thomas, S. (2014). Journal of
Polymer Research, 21(3), 1-17.
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Electrospun PCL/ZnO nanoparticles membrane
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Histology

Neat PCL PCL /ZnO 1%

5t day

10th day

20t day

B Augustine, R., Dominic, E. A., Reju, |., Kaimal, B., Kalarikkal, N., & Thomas, S. (2014). RSC Advances 4 no. 48 (2014):
24777-24785.



Histology

Neat PCL PCL /ZnO 1%

5th day |

10th day |

20t day |

- Augté?ine, R., Dominic, E. A., Reju, ., Kaimal, B., Kalarikkal, N., & Thomas, S. (2014). RSC Advances 4 no. 48 (2014):
24777-24785.




SEM after implantation
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Augustine, R., Dominic, E. A., Reju, I., Kaimal, B.,

24777-24785.
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Kalarikkal, N., & Thomas, S. (2014). RSC Advances 4 no. 48 (2014):



Wound healing

—

PCL PCL/ZnO +ve Ctrl - ve Ctrl
Percentage of wound healing was calculated Day 1
using the formula,
W% = [WAO - WAt] x 100
WA?
Day 5

Where W*is the percentage of wound
healing, WA? is the area of wound at 0t day
and WA! is the area of wound after different
days of healing.

110 —v— PCL with 1% ZnO Day 10
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— 80_- ;
% 70-
£ o0 Day 20
£ o)
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10 Day 30
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Days

B Augu@%ine, R., Dominic, E. A., Reju, ., Kaimal, B., Kalarikkal, N., & Thomas, S. (2014). RSC Advances 4 no. 48 (2014):
24777-24785.




; & -t . 4 . - 5 »
e * - - .

Light microscope images of PLGA 85:15 (A-D), 75:25 (E-H), and 50:50 (I-L) electrospun polymers
after immersion in Ringers solution at 37° C in 5% CO, for various lengths of time as indicated in the
figure. As can be seen as the percentage of PGA increased the polymer fibres lost integrity faster.
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Day 0

SEM micrographs of electrospun PLGA 85:15, (A p B), 75:25 (C-E), and 50:50 (F-H) after being
immersed in Ringers solution at 37 C in 5% CO2 for various lengths of time as indicated in the
figure. Scale bar % 10 mm.



PLLA

PLGA
85:15

PLGA
75:25

PLGA
50:50

5 months

SEM micrographs of PLLA (A-C), PLGA 85:15 (D-F), 75:25 (6-H), 50:50 (I-J) following
implantation into the flank of adult male Wistar rats at the time points indicated(4 weeks to 1
year).



HYALURONIC ACID




@ PHOLOGY ANALYSIS, ACS APPLIED MATERIALS AND

LIMATB INTERFACES, 2014 (THOMAS )
10-250pum

| GH2.4)% |

ST ¢ el W o £ 4
: » " == ,’—"/ ¢ N
\ R —— A,

>
=15

i;__-\;:-g:__” o

66



S POROSITY ESTIMATION

LIMATB

Laboratoire dingéniede des MATédoux de Bretogne

10-350 ym, tomography

Porosity- 90.6%

GH(2.4%), ACS APPLIED MATERIALS AND INTERFACES, 2014
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N SURFACE PROPERTIES

Laboratoire dingéniede des MATédoux de Bretogne
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CELL VIABILITY
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Conclusion

\ Application ares of Electrospun Nanofibers
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“Live as if you were to die tomorrow.
Learn as if you were to live forever.”
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KOTTAYAM, KERALA, INDIA

“The aim of University education should be to turn
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